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F. Barreiro, J.P. Fernández, G. Garćıa, C. Glasman29, J.M. Hernández30, L. Labarga, J. del Peso, J. Puga,
I. Redondo31, J. Terrón
Univer. Autónoma Madrid, Depto de F́ısica Teórica, Madrid, Spain n
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Abstract. Exclusive electroproduction of ρ0 mesons has been measured using the ZEUS detector at HERA
in two Q2 ranges, 0.25 < Q2 < 0.85 GeV2 and 3 < Q2 < 30 GeV2. The low-Q2 data span the range
20 < W < 90 GeV; the high-Q2 data cover the 40 < W < 120 GeV interval. Both samples extend up to
four-momentum transfers of |t| = 0.6 GeV2. The distribution in the azimuthal angle between the positron
scattering plane and the ρ0 production plane shows a small but significant violation of s-channel helicity
conservation, corresponding to the production of longitudinally polarised (i.e. helicity zero) ρ0 mesons
from transverse photons. Measurements of the 15 combinations of spin-density matrix elements which
completely define the angular distributions are presented and discussed.
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1 Introduction

Exclusive production of vector mesons by real and virtual
photons, γp → V p and γ∗p → V p (V = ρ0, ω, φ, J/ψ, . . .),
has been studied extensively, both in fixed-target experi-
ments and at HERA [1]. For photon-proton (γ∗p) centre-
of-mass energies W >∼ 10 GeV, the production of light vec-
tor mesons (ρ0, ω, φ) at low photon virtuality,
33 now a self-employed consultant
34 now at Loma Linda University, Loma Linda, CA, USA
35 partially supported by the Foundation for German-Russian
Collaboration DFG-RFBR
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Q2 < 1 GeV2, exhibits features typical of soft diffrac-
tive processes: a weak dependence on centre-of-mass en-
ergy and a differential cross section that, at low |t| values,
falls exponentially with −t, where t is the square of the
four-momentum exchanged between the photon and the
proton. These features are consistent with the expecta-
tions of the Vector Meson Dominance model (VMD) [2]
according to which the photon is considered to fluctuate
into a vector meson which then scatters elastically from
the proton.

The low-energy data indicate that the amplitude for
the photon/vector-meson transition is predominantly s-
channel helicity conserving, i.e. the helicity of the vec-
tor meson is equal to that of the photon when the spin-
quantisation axis is chosen along the direction of the me-
son momentum in the γ∗p centre-of-mass system. The ex-
change of an object in the t-channel with P = (−1)J , e.g.
JP = 0+, 1−, 2+, 3−, . . .(natural parity exchange in the
t channel, NPE), dominates such diffractive processes [3,
4]. However, small helicity-single-flip and helicity-double-
flip contributions to the amplitude have been reported in
π+π− photoproduction in the ρ0 mass region at
W <∼ 4 GeV [5]. Helicity-single-flip amplitudes have also
been observed in ρ0 electroproduction for 1.3 < W <
2.8 GeV and 0.3 < Q2 < 1.4 GeV2 [6]. A helicity-single-
flip contribution of (14 ± 8)% was measured in ρ0 muo-
production at W = 17 GeV [7].

Data from HERA have shown that when the reaction
involves a large scale, such as the charm quark mass in J/ψ
photoproduction [8] or high Q2 in ρ0 electroproduction [9,
10], the cross section rises more steeply with W and the
t distribution is flatter than in the case where no such
scale is present, such as ρ0 photoproduction [11–13]. Such
results can be understood in terms of models based on
perturbative QCD (pQCD). In these models, the photon
fluctuates into a qq̄ pair and the interaction of the pair
with the proton is mediated by the exchange of two gluons
in a colour singlet state [14]. The resulting cross section
is proportional to the square of the gluon density in the
proton.

The cross section for the exclusive production of vector
mesons from virtual photons has contributions from both
transverse and longitudinal photons. These contributions
are expected to have different W and Q2 dependences [1,
15], and their extraction would provide an important test
of the understanding of the production process. The an-
gular distributions of the decay products of the vector
meson, in principle, yield the separate contributions of
transverse and longitudinal photons. Previous studies at
HERA [9,11–13,16–18] assumed conservation of helicity
in the s-channel amplitudes (s-channel helicity conserva-
tion, SCHC), in which case the ratio of longitudinal to

(BMBF)
n supported by the Spanish Ministry of Education and Science
through funds provided by CICYT
o supported by the Particle Physics and Astronomy Research
Council
p supported by the US Department of Energy
q supported by the US National Science Foundation
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transverse photon cross sections, R, is given in terms of
the ratio of the number of helicity 0 (i.e. longitudinally
polarised) to helicity ±1 (i.e. transversely polarised) ρ0

mesons produced. Sufficient data are now available to test
the validity of SCHC at HERA by measuring the full set
of matrix elements which completely determine the decay
angular distributions. This paper reports the determina-
tion of such a set of matrix elements for exclusive ρ0 elec-
troproduction at HERA, ep → eρ0p (ρ0 → π+π−). Two
kinematic ranges are studied, 0.25 < Q2 < 0.85 GeV2,
20 < W < 90 GeV (referred to as the “BPC” sample)
and 3 < Q2 < 30 GeV2, 40 < W < 120 GeV (the “DIS”
sample). The two samples are those already used in the
previous ZEUS paper [9], where SCHC was assumed. A
similar analysis has recently been presented by the H1
Collaboration in the range 1 < Q2 < 60 GeV2 [10].

The data are used to determine R without relying on
the SCHC hypothesis, to evaluate the size of the helicity-
single-flip and helicity-double-flip amplitudes and to test
the extent to which natural parity exchange dominates in
the t channel. The results are compared to recent calcu-
lations [19–21] of the amplitudes for exclusive ρ0 meson
production in the framework of pQCD models of the type
described above, i.e. assuming the t-channel exchange of
a gluon pair.

Under the assumption of NPE, there are five indepen-
dent combinations of photon and meson helicity states,
yielding two helicity-conserving amplitudes, two single-flip
amplitudes and one double-flip amplitude for ρ0 electro-
production (see, for example, [19]). The calculations indi-
cate that, for photon virtualities exceeding the hadronic
mass scale of about 1 GeV2, the single-flip amplitude for
producing longitudinally polarised vector mesons from
transverse photons is significant. This amplitude is of
higher twist and vanishes in the non-relativistic limit of
the ρ0 meson wave function; in addition, it is propor-
tional to

√|t|, while the double-flip amplitude grows lin-
early with |t|. These amplitudes are rendered experimen-
tally accessible via their interference with the dominant
helicity-conserving amplitudes. Conversely, the amplitude
for producing transversely polarised ρ0 mesons from lon-
gitudinal photons is expected to be negligible [22]. There
are also predictions of non-vanishing single and double-
flip contributions in the non-perturbative region of small
photon virtualities, Q2 < 1 GeV2 [20,21]. VMD-based
models [23] also predict SCHC breaking on the basis of
the analogy between photon-hadron and hadron-hadron
interactions.

2 Experimental set-up

The data were collected at the ep collider HERA in 1995
using the ZEUS detector. In this period HERA operated
at a proton energy of 820 GeV and a positron energy
of 27.5 GeV, giving a total centre-of-mass energy

√
s '

300 GeV. A detailed description of the ZEUS detector can
be found elsewhere [9,24]. The main components used in
this analysis are briefly described below.

e(k) e(k')-Q2

γ*(q)

ρ0

p(P) p(P')

W2

t
Fig. 1. Schematic diagram of the reaction ep → eρ0p, indicat-
ing the kinematic variables used in this analysis

The high-resolution uranium-scintillator calorimeter,
CAL, consists of three parts: forward 1 (FCAL), barrel
(BCAL) and rear (RCAL) calorimeters. Each part is sub-
divided transversely into towers that are segmented longi-
tudinally into one electromagnetic section and one
(RCAL) or two (FCAL, BCAL) hadronic sections.

Charged-particle tracks are reconstructed and their
momenta measured using the central tracking detector
(CTD). The CTD is a cylindrical drift chamber operated
in a magnetic field of 1.43 T produced by a supercon-
ducting solenoid. It consists of 72 cylindrical layers, or-
ganised in 9 superlayers covering the polar angular region
15◦ < θ < 164◦.

The trajectory of positrons scattered at small angles
with respect to the beam direction is determined from
the beam pipe calorimeter (BPC) and the small-angle
rear tracking detector (SRTD). The BPC is an electro-
magnetic sampling calorimeter located at Z = −294 cm.
The SRTD is attached to the front face of the RCAL. It
consists of two planes of scintillator strips, 1 cm wide and
0.5 cm thick, arranged in orthogonal orientations and read
out via optical fibres and photomultiplier tubes. It covers
the region of 68 × 68 cm2 in X and Y with the exclusion
of a 10 × 20 cm2 hole at the centre for the beam pipe.

3 Kinematics and decay angular distributions

The following kinematic variables, some of which are indi-
cated in Fig. 1, are used to describe exclusive ρ0 produc-
tion:

– The four-momenta of the incident positron (k), scat-
tered positron (k′), incident proton (P ), scattered pro-
ton (P ′) and virtual photon (q);

– Q2 = −q2 = −(k − k′)2, the negative four-momentum
squared of the virtual photon;

– W 2 = (q + P )2, the squared centre-of-mass energy of
the photon-proton system;

1 Throughout this paper the standard ZEUS right-handed
coordinate system is used: the Z-axis points in the direction
of the proton beam momentum (referred to as the forward
direction) and the horizontal X-axis points towards the centre
of HERA. The nominal interaction point is at X = Y = Z = 0.
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– y = (P · q)/(P · k), the fraction of the positron energy
transferred to the proton in its rest frame;

– Mππ, the invariant mass of the two decay pions;
– t = (P −P ′)2, the squared four-momentum transfer at

the proton vertex.

The kinematic variables were reconstructed using the
so-called “constrained” method [9,25], which uses the mo-
menta of the decay particles measured in the CTD and the
polar and azimuthal angles of the scattered positron de-
termined with the BPC (for the BPC sample) or with the
CAL and the SRTD (for the DIS sample).

The exclusive electroproduction and decay of ρ0

mesons is described, at given values of W , Q2, Mππ and t,
by three angles: Φh – the angle between the ρ0 production
plane and the positron scattering plane in the γ∗p centre-
of-mass frame (see Fig. 2); θh and φh – the polar and az-
imuthal angles of the positively-charged decay pion in the
s-channel helicity frame, in which the spin-quantisation
axis is defined as the direction opposite to the momentum
of the final-state proton in the ρ0 rest frame. In both the
ρ0 rest frame and the γ∗p centre-of-mass system, φh is
the angle between the decay plane and the ρ0 production
plane. The angular distribution as a function of these three
angles, W (cos θh, φh, Φh), is parameterised by the ρ0 spin-
density matrix elements, ρα

ik, where i, k = −1, 0, 1 and
by convention α=0,1,2,4,5,6 for an unpolarised charged-
lepton beam [26]. The superscript denotes the decomposi-
tion of the spin-density matrix into contributions from the
following photon polarisation states: unpolarised trans-
verse photons (0); linearly polarised transverse photons
(1,2); longitudinally polarised photons (4); and from the
interference of the longitudinal and transverse amplitudes
(5,6).

The decay angular distribution can be expressed in
terms of combinations, r04ik and rα

ik, of the density matrix
elements:

r04ik =
ρ0

ik + εRρ4
ik

1 + εR
, (1)

rα
ik =




ρα
ik

1 + εR
, α = 1, 2

√
R ρα

ik

1 + εR
, α = 5, 6,

(2)

where ε is the ratio of the longitudinal to transverse pho-
ton fluxes and R = σγ?p

L /σγ?p
T , with σγ?p

L and σγ?p
T the

cross sections for exclusive ρ0 production from longitu-
dinal and transverse virtual photons, respectively. In the
kinematic range of this analysis, the value of ε varies only
between 0.98 and 1.0; hence ρ0

ik and ρ4
ik cannot be distin-

guished.
The hermitian nature of the spin-density matrix and

the requirement of parity conservation reduces the number
of independent combinations to 15, in terms of which the
angular distribution can be written as

W (cos θh, φh, Φh) =
3
4π

[
1
2
(1 − r0400) +

1
2
(3r0400 − 1) cos2 θh

−
√

2 Re{r0410} sin 2θh cosφh − r041−1 sin2 θh cos 2φh

−ε cos 2Φh(r111 sin2 θh + r100 cos2 θh

−
√

2 Re{r110} sin 2θh cosφh

−r11−1 sin2 θh cos 2φh)

−ε sin 2Φh(
√

2 Im{r210} sin 2θh sinφh

+Im{r21−1} sin2 θh sin 2φh)

+
√

2ε(1 + ε) cosΦh(r511 sin2 θh + r500 cos2 θh

−
√

2 Re{r510} sin 2θh cosφh − r51−1 sin2 θh cos 2φh)

+
√

2ε(1 + ε) sinΦh(
√

2 Im{r610} sin 2θh sinφh

+Im{r61−1} sin2 θh sin 2φh)
]
. (3)

The 15 coefficients r04ik , rα
ik are related to various com-

binations of the helicity amplitudes Tλρλγ
, where λρ and

λγ are the helicities of the ρ0 meson and of the photon,
respectively. Table 1 shows the relations between the co-
efficients r04ik , rα

ik and the helicity amplitudes.
Under the SCHC assumption, the angular distribution

for the decay of the ρ0 meson depends on only two an-
gles, θh and ψh = φh − Φh, and is characterised by three
independent parameters, r0400, r

1
1−1 and Re{r510}:

W (cos θh, ψh) =
3
4π

[
1
2
(1 − r0400) +

1
2
(3r0400 − 1) cos2 θh

+ εr11−1 sin2 θh cos 2ψh (4)

− 2
√
ε(1 + ε)Re{r510} sin 2θh cosψh

]
.

The SCHC hypothesis also implies that r11−1 =
−Im{r21−1} and Re{r510} = −Im{r610}. In this case, the
ratio R can be determined from the polar angular distri-
bution alone:

R =
1
ε

r0400

1 − r0400
. (5)

The combined assumptions of SCHC and NPE fur-
ther reduce the number of independent parameters to two,
since the polar and azimuthal angular distributions are
then related via:

1 − r0400 − 2r11−1 = 0. (6)

If the SCHC requirement is relaxed, then

R =
1
ε

r0400 −∆2

1 − (r0400 −∆2)
, (7)

with

∆2 =
|T01|2 − 2ε|T10|2
NT + εNL

, (8)

where NL = |T00|2 + 2|T10|2 and NT = |T11|2 + |T1−1|2 +
|T01|2. The quantity ∆ can be approximated as:

∆ ' |T01|√
NT + εNL

' |T01|√|T11|2 + |T00|2
' r500√

2r0400

, (9)
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Fig. 2. Schematic diagrams of a the process ep →
eρ0p in the γ∗p centre-of-mass system, and b the de-
cay of the ρ0 in its rest frame. Three angles suffice
to describe the reaction: the azimuthal angle between
the scattering plane and the production plane, Φh;
and the two ρ0 decay angles, φh, the azimuthal an-
gle between the production and decay planes, defined
in either the γ∗p system or in the ρ0 rest frame; and
θh, which is the polar angle of the positively-charged
decay product defined with respect to the direction
of the ρ0 momentum vector in the γ∗p system, or,
equivalently, the direction opposite to the momentum-
vector of the final-state proton in the rest frame of the
ρ0 meson. This choice of the spin-quantisation axis de-
fines the helicity frame
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Fig. 3. Acceptance as a function of cos θh, φh and Φh, for
the BPC and the DIS data samples. The bars indicate the
statistical uncertainties

where the amplitude |T10| (for the production of trans-
versely polarised ρ0 mesons from longitudinal photons) is
neglected with respect to |T01| and the amplitudes T00 and
T01 are taken to be in phase; in addition ε = 1 is assumed.
Single- and double-flip amplitudes have been assumed to
be small with respect to T00 and T11.

Finally, the assumption of NPE alone leads to the sum
rule:

1 − r0400 + 2r041−1 − 2r111 − 2r11−1 = 0. (10)

4 Event selection

The event selection is similar to that of the previous anal-
ysis [9]; it is summarised briefly in the following.

The online event selection required an energy deposit
in the BPC or an electron candidate in the CAL, along
with the detection of two tracks in the CTD.

In the offline selection the following further require-
ments were imposed:

– The energy of the scattered positron was required to
be greater than 20 GeV if measured in the BPC and
greater than 5 GeV if measured in the CAL.

– The requirement E−pZ > 45 GeV was imposed, where
E−pZ =

∑
i(Ei −pZi) and the summation is over the

energies and longitudinal momenta of the final-state
positron and pions. This cut, applied in the DIS analy-
sis, excluded events with high-energy photons radiated
in the initial state.

– The Z coordinate of the interaction vertex was re-
quired to be within ±50 cm of the nominal interaction
point.

– In addition to the scattered positron, the presence of
exactly two oppositely-charged tracks was required,
each associated with the reconstructed vertex, and
each with pseudorapidity |η| less than 1.75 and trans-
verse momentum greater than 150 MeV; pseudora-
pidity is defined as η = − ln (tan (θ/2)). These cuts
excluded regions of low reconstruction efficiency and
poor momentum resolution in the CTD.

– Events with any energy deposit larger than 300 MeV
in the CAL and not associated with either the pion
tracks or the positron were rejected [27,28].

In addition, the following requirements were applied
to select kinematic regions of high acceptance:

– The BPC analysis was limited to the region 0.25 <
Q2 < 0.85 GeV2 and 20 < W < 90 GeV.

– The DIS analysis was restricted to the kinematic region
3 < Q2 < 30 GeV2 and 40 < W < 120 GeV.

– Only events in the π+π− mass interval 0.6 < Mππ <
1.0 GeV and with |t| < 0.6 GeV2 were taken. The mass
interval is slightly narrower than that used previously
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Table 1. The 15 combinations of spin-density matrix elements
r04ik , rα

ik, expressed in terms of the helicity amplitudes; natural
parity exchange in the t channel is assumed for r041−1, r100, r11−1,
Im{r21−1}, Re{r510}, Im{r610}

r0400 = ε|T00|2
NT +εNL

+ |T01|2
NT +εNL

Re{r0410} = 1
2

Re{T11T ?
01}

NT +εNL
+ εRe{T10T ?

00}
NT +εNL

+ 1
2

Re{T1−1T ?
0−1}

NT +εNL

r041−1 = − ε|T10|2
NT +εNL

+
Re{T11T ?

1−1}
NT +εNL

r111 = Re{T1−1T ?
11}

NT +εNL

r100 = − |T01|2
NT +εNL

Re{r110} = 1
2

Re{T11T ?
0−1}

NT +εNL
+ 1

2
Re{T1−1T ?

01}
NT +εNL

r11−1 = 1
2

|T11|2
NT +εNL

+ 1
2

|T1−1|2
NT +εNL

Im{r210} = − 1
2

Re{T11T ?
0−1}

NT +εNL
+ 1

2
Re{T1−1T ?

01}
NT +εNL

Im{r21−1} = − 1
2

|T11|2
NT +εNL

+ 1
2

|T1−1|2
NT +εNL

r511 = 1√
2

Re{T10T ?
11}

NT +εNL
− 1√

2

Re{T10T ?
1−1}

NT +εNL

r500 =
√

2Re{T00T ?
01}

NT +εNL

Re{r510} = 1
2
√

2

Re{T11T ?
00}

NT +εNL
+ 1√

2

Re{T10T ?
01}

NT +εNL

− 1
2
√

2

Re{T1−1T ?
00}

NT +εNL

r51−1 = 1√
2

Re{T11T ?
−10}

NT +εNL
+ 1√

2

Re{T10T ?
−11}

NT +εNL

Im{r610} = − 1
2
√

2

Re{T11T ?
00}

NT +εNL
− 1

2
√

2

Re{T1−1T ?
00}

NT +εNL

Im{r61−1} = − 1√
2

Re{T−10T ?
11}

NT +εNL
+ 1√

2

Re{T10T ?
−11}

NT +εNL

where NL = |T00|2 + 2|T10|2
NT = |T11|2 + |T1−1|2 + |T01|2

[9], in order to reduce the effect of the background
from non-resonant π+π− production. In the selected
Mππ range the resonant contribution is ≈ 98% for the
BPC sample and ≈ 100% for the DIS sample.

The above selections yielded 5271 events in the BPC
sample and 2510 events in the DIS sample.

Table 2. The 15 combinations of spin-density matrix elements
r04ik , rα

ik, as obtained from the BPC and DIS data sets. Statis-
tical and systematic uncertainties are given separately. The
BPC data cover the kinematic range 0.25 < Q2 < 0.85 GeV2

(〈Q2〉 = 0.41 GeV2), 20 < W < 90 GeV (〈W 〉 = 45 GeV),
0.6 < Mππ < 1.0 GeV and |t| < 0.6 GeV2 (〈|t|〉 = 0.14 GeV2).
The DIS data cover the kinematic range 3 < Q2 < 30 GeV2

(〈Q2〉 = 6.3 GeV2), 40 < W < 120 GeV (〈W 〉 = 73 GeV),
0.6 < Mππ < 1.0 GeV and |t| < 0.6 GeV2 (〈|t|〉 = 0.17 GeV2)

ZEUS 1995 (BPC) ZEUS 1995 (DIS)

r0400 0.272 ± 0.011 ± 0.011 0.725 ± 0.012 ± 0.017

Re{r0410} 0.034 ± 0.006 ± 0.009 0.013 ± 0.010 ± 0.022

r041−1 −0.040 ± 0.009 ± 0.019 0.000 ± 0.011 ± 0.008

r111 −0.039 ± 0.009 ± 0.021 −0.006 ± 0.012 ± 0.026

r100 0.004 ± 0.015 ± 0.038 −0.013 ± 0.041 ± 0.076

Re{r110} −0.019 ± 0.008 ± 0.013 −0.036 ± 0.015 ± 0.015

r11−1 0.334 ± 0.011 ± 0.023 0.098 ± 0.016 ± 0.016

Im{r210} 0.039 ± 0.008 ± 0.012 0.008 ± 0.014 ± 0.031

Im{r21−1} −0.331 ± 0.011 ± 0.020 −0.135 ± 0.017 ± 0.035

r511 0.008 ± 0.004 ± 0.012 0.018 ± 0.005 ± 0.012

r500 0.051 ± 0.010 ± 0.018 0.095 ± 0.019 ± 0.024

Re{r510} 0.142 ± 0.004 ± 0.012 0.142 ± 0.007 ± 0.008

r51−1 −0.010 ± 0.006 ± 0.008 −0.003 ± 0.008 ± 0.005

Im{r610} −0.141 ± 0.003 ± 0.005 −0.136 ± 0.007 ± 0.008

Im{r61−1} 0.014 ± 0.006 ± 0.007 0.009 ± 0.008 ± 0.018

5 Monte Carlo simulation

The relevant Monte Carlo generators have been described
in detail previously [9]. Here their main aspects are sum-
marised.

In the BPC analysis, a dedicated Monte Carlo gener-
ator based on the JETSET7.4 [29] package was used. The
simulation of exclusive ρ0 production was based on the
VMD model and Regge phenomenology. The effective Q2,
W and t dependences of the cross section were parame-
terised to reproduce the measurements [9].

In the DIS analysis, a program [30] interfaced to HER-
ACLES4.4 [31] was used. Again, the effective Q2, W and
t dependences of the cross section were parameterised to
reproduce the results [9].

In both cases the decay angular distributions were gen-
erated uniformly and the Monte Carlo events were then
iteratively reweighted with (3) using the results of the
present analysis for the 15 combinations of matrix ele-
ments r04ik , rα

ik.
The generated events were processed through the same

chain of selection and reconstruction procedures as the
data, thus accounting for trigger as well as detector effi-
ciencies and smearing effects. For both analyses, the num-
ber of simulated events after reconstruction was about a
factor of seven greater than the number of reconstructed
data events. Figure 3 shows the acceptances (defined as in
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Fig. 4. Observed distributions for cos θh a, φh b, Φh c
and ψh = φh − Φh (d, e, f) of the reconstructed BPC
data (points) and the reconstructed Monte Carlo events (his-
tograms). The solid histograms correspond to the Monte Carlo
data reweighted with (3), in which the results of the present
analysis were used for the 15 combinations of matrix elements
r04ik , rα

ik. The dashed histograms correspond to the SCHC hy-
pothesis. The distributions are not corrected for acceptance.
The error bars indicate the statistical uncertainty. The statis-
tical uncertainty of the simulated distributions is negligible

[9]) as a function of cos θh, φh and Φh, both for the BPC
and the DIS data. The different normalisations of the ac-
ceptances for the BPC and DIS samples mainly reflect the
different coverage for the azimuthal angle of the scattered
electron, the BPC covering only a small fraction of 2π.

6 Results

Figures 4 and 5 show the reconstructed decay angular dis-
tributions for the data (full symbols) and Monte Carlo
events (solid histograms) for the BPC and for the DIS
samples, respectively. The Monte Carlo simulation repro-
duces the measured distributions well. The dashed his-
tograms show the same Monte Carlo events reweighted to
respect SCHC. The violation of SCHC can be most clearly
seen in the Φh distributions, particularly for the DIS sam-
ple of Fig. 5. In the following we focus on how this vio-
lation manifests itself in terms of the 15 combinations of
spin-density matrix elements, r04ik , rα

ik.
The combinations r04ik , rα

ik were obtained by minimising
the difference between the three-dimensional
(cos θh, φh, Φh) angular distributions of the data and those
of the simulated events. A binned likelihood method was
used, assuming a Poisson distribution for the number of
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Fig. 5. Observed distributions for cos θh a, φh b, Φh c
and ψh = φh − Φh (d, e, f) of the reconstructed DIS
data (points) and the reconstructed Monte Carlo events (his-
tograms). The solid histograms correspond to the Monte Carlo
data reweighted with (3), in which the results of the present
analysis were used for the 15 combinations of matrix elements
r04ik , rα

ik. The dashed histograms correspond to the SCHC hy-
pothesis. The distributions are not corrected for acceptance.
The error bars indicate the statistical uncertainty. The statis-
tical uncertainty of the simulated distributions is negligible

events in each bin. The number of bins in cos θh, φh and
Φh was 8 × 8 × 8.

Table 2 summarises the results for the 15 coefficients
r04ik , rα

ik. The BPC results cover the kinematic region 0.25
< Q2 < 0.85 GeV2 (〈Q2〉 = 0.41 GeV2), 20 < W <
90 GeV (〈W 〉 = 45 GeV), 0.6 < Mππ < 1.0 GeV and
|t| < 0.6 GeV2 (〈|t|〉 = 0.14 GeV2). The DIS results cover
the region 3 < Q2 < 30 GeV2 (〈Q2〉 = 6.3 GeV2), 40 <
W < 120 GeV (〈W 〉 = 73 GeV), 0.6 < Mππ < 1.0 GeV
and |t| < 0.6 GeV2 (〈|t|〉 = 0.17 GeV2). Tables 3, 4 and 5
give the BPC results in bins of W , Q2 and t. The lim-
ited statistics and poorer t resolution do not allow such
fine binning for the DIS sample. Tables 6 and 7 give the
full correlation matrix for the BPC and the DIS results,
respectively.

Figure 6 shows the combinations of matrix elements
for the BPC and the DIS data as a function of Q2. The
coefficient r0400 represents the probability that the ρ0 meson
be produced in the helicity zero state, i.e. with longitudi-
nal polarisation; it grows with Q2, a result qualitatively
in agreement with SCHC, since the contribution of lon-
gitudinal photons increases with increasing Q2. Less pro-
nounced variations with Q2 are also observed for r11−1 and



The ZEUS Collaboration: Measurement of the spin-density matrix elements 403

0.2

0.4

0.6

0.8

1 10

r04r00

-0.05

0

0.05

0.1

0.15

1 10

Re{ r 04}Re{ r 10}

-0.05

0

0.05

1 10

r04r1-1

-0.05

0

0.05

0.1

1 10

r1r11

-0.2

-0.1

0

0.1

1 10

r1r00
-0.1

-0.05

0

1 10

Re{ r 1Re{ r 10} 0.1

0.2

0.3

0.4

1 10

r1r1-1 -0.05

0

0.05

1 10

Im { r 2Im { r 10}

-0.4
-0.3
-0.2
-0.1

0

1 10

Im { r 2Im { r 1-1}

-0.02

0

0.02

0.04

0.06

1 10

r5r11

0

0.05

0.1

0.15

0.2

1 10

r5r00

0.125

0.15

0.175

0.2

0.225

1 10

Re{ r 5Re{ r 10}

-0.04

-0.02

0

0.02

0.04

1 10

r5r1-1

-0.15

-0.1

-0.05

1 10

Im { r 6Im { r 10}

0

0.05

0.1

1 10

Im { r 6Im { r 1-1}
ZEUS 1995

H1

Q2 (GeV2)

Fig. 6. The 15 combinations of spin-
density matrix elements r04ik , rα

ik, as ob-
tained from the BPC and DIS data sets
as a function of Q2. The full symbols
indicate the present results; the open
points indicate the H1 results [10]. The
inner error bars indicate the statistical
uncertainties, the outer the statistical
and systematic uncertainties summed
in quadrature. The continuous curves
are the prediction of the model calcula-
tion of [20], the dotted curves the pre-
diction of [21]. The dashed lines indi-
cate the SCHC expectation. The pre-
dictions of [21] and of SCHC coincide
for r041−1 and r111

Im{r21−1}, which are related to r0400 under the combined
SCHC and NPE assumptions (see Sect. 3).

Figure 7 shows the coefficients r04ik , rα
ik as functions of

t for the BPC sample alone. The data suggest a growth of
r500 with |t|.

Figures 6, 7 and 8 compare the results to the ex-
pectations of SCHC (dashed lines) for the ten elements
for which SCHC makes explicit predictions. Again devi-
ations from SCHC are observed for both the BPC data
(Re{r0410}, r041−1, r

1
11, Im{r210}, r500) and the DIS data (r500).

A comparison of the results with the SCHC hypothe-
sis yields χ2/ndf = 81.1/12 for the BPC sample and
χ2/ndf = 79.2/12 for the DIS sample. Figures 6 and 8
also show the recent H1 results [10], obtained in the kine-
matic region 1 < Q2 < 60 GeV2, 30 < W < 140 GeV and
|t| < 0.5 GeV2; they are in excellent agreement with the
present data. The results of the model calculations [19–21]
are also shown in Figs. 6 and 8.

The present results are not corrected for the contri-
bution of non-resonant π+π− production and its interfer-
ence with resonant ρ0 → π+π− production via the so-
called Söding mechanism [32]. Hence, strictly speaking,
they only apply to the reaction ep → eπ+π−p with Mππ

in the quoted range. While the relative magnitude of the
non-resonant contribution is small, the interference term,
which changes sign at the nominal ρ mass value, may sig-
nificantly affect the angular distributions. In order to as-
sess the sensitivity of the data to changes in the selected

Mππ range – and hence changes in the relative contribu-
tions of the non-resonant and the interference terms – the
events with Mππ < Mρ and Mππ > Mρ were analysed
separately. For the DIS sample, where the Söding effect is
small [9,10], the results thus obtained are consistent with
those found for the whole Mππ range, suggesting that the
observed breaking of SCHC is indeed a feature of the re-
action ep → eρ0p. The BPC data, however, exhibit some
dependence on Mππ, as shown in Table 8. In particular,
r0400 decreases for the higher Mππ selection, a result qual-
itatively consistent with expectations based on the inter-
ference between resonant and non-resonant π+π− produc-
tion [33]. The observed variations of r11−1 and Im{r21−1}
reflect that of r0400 under the combined SCHC and NPE
assumptions (see Sect. 3). Appreciable Mππ dependences
are also observed for r500, Re{r510} and Im{r610}, which sug-
gests an influence of the non-resonant π+π− production
on these combinations of matrix elements.

The results are also not corrected for the contribu-
tion from the proton-dissociative reaction, ep → eρ0N ,
where N is a state of mass MN (MN

<∼ 4 GeV) which es-
capes undetected in the proton beam direction. The size
of this background was estimated [9] to be (23 ± 8)% and
(24+9

−5)% for the BPC and the DIS samples, respectively.
TheW , Q2, cos θh, φh and Φh distributions for the proton-
dissociative events (tagged by activity in the FCAL [9])
were found to be consistent with those for the exclusive
events, as expected on the basis of the factorisation of
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Fig. 7. The 15 combinations of spin-
density matrix elements r04ik , rα

ik, as ob-
tained from the BPC data as a func-
tion of t. The inner error bars indi-
cate the statistical uncertainties, the
outer bars the statistical and system-
atic uncertainties summed in quadra-
ture. The horizontal bars indicate the
size of the bins. The dashed lines in-
dicate the prediction of SCHC, where
available. The data cover the kinematic
range 0.25 < Q2 < 0.85 GeV2, 20 <
W < 90 GeV, 0.6 < Mππ < 1.0 GeV
and |t| < 0.6 GeV2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.6 0.7 0.8

ZEUS 1995

H1

 r04 r00

 Re{ r 04} Re{ r 10}

 r04 r1-1

 r1 r11

 r1 r00

 Re{ r 1 Re{ r 10}

 r1 r1-1

 Im{ r 2 Im{ r 10}

 Im{ r 2 Im{ r 1-1}

 r5 r11

 r5 r00

 Re{ r 5 Re{ r 10}

 r5 r1-1

 Im{ r 6 Im{ r 10}

 Im{ r 6 Im{ r 1-1}

Fig. 8. The 15 combinations of spin-density matrix
elements r04ik , rα

ik, as obtained from the DIS data com-
pared with the predictions of the model calculation
of [19] (continuous histogram) and of SCHC (dashed
histogram, see text for details). The solid points indi-
cate the present results; the open points indicate the
H1 data [10]. The inner error bars indicate the statisti-
cal uncertainties, the outer the statistical and system-
atic uncertainties summed in quadrature. The ZEUS
data cover the kinematic range 3 < Q2 < 30 GeV2

(〈Q2〉 = 6.3 GeV2), 40 < W < 120 GeV (〈W 〉 =
73 GeV), 0.6 < Mππ < 1.0 GeV and |t| < 0.6 GeV2.
The H1 data cover the range 1 < Q2 < 60 GeV2,
30 < W < 140 GeV and |t| < 0.5 GeV2. The predic-
tion of [19] is for Q2 = 10 GeV2 and W = 100 GeV
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Table 3. The 15 combinations of spin-density matrix elements
r04ik , rα

ik, as obtained from the BPC data in two W intervals.
Statistical and systematic uncertainties are given separately.
The data cover the kinematic range 0.25 < Q2 < 0.85 GeV2,
20 < W < 90 GeV, 0.6 < Mππ < 1.0 GeV and |t| < 0.6 GeV2.
The average W values for the two intervals are 〈W 〉 = 31 GeV
and 〈W 〉 = 61 GeV, respectively

ZEUS 1995 (BPC)

20 < W < 45 GeV 45 < W < 90 GeV

r0400 0.293 ± 0.014 ± 0.016 0.257 ± 0.017 ± 0.021

Re{r0410} 0.034 ± 0.009 ± 0.008 0.027 ± 0.010 ± 0.005

r041−1 −0.032 ± 0.011 ± 0.009 −0.056 ± 0.013 ± 0.020

r111 −0.040 ± 0.012 ± 0.006 −0.038 ± 0.015 ± 0.007

r100 0.004 ± 0.021 ± 0.030 0.003 ± 0.025 ± 0.051

Re{r110} −0.024 ± 0.011 ± 0.016 −0.012 ± 0.013 ± 0.005

r11−1 0.328 ± 0.015 ± 0.014 0.345 ± 0.018 ± 0.018

Im{r210} 0.037 ± 0.010 ± 0.013 0.038 ± 0.012 ± 0.006

Im{r21−1} −0.313 ± 0.015 ± 0.023 −0.348 ± 0.018 ± 0.022

r511 0.015 ± 0.006 ± 0.008 0.004 ± 0.007 ± 0.010

r500 0.039 ± 0.013 ± 0.016 0.050 ± 0.016 ± 0.007

Re{r510} 0.143 ± 0.005 ± 0.008 0.142 ± 0.006 ± 0.013

r51−1 −0.013 ± 0.008 ± 0.007 −0.008 ± 0.009 ± 0.010

Im{r610} −0.150 ± 0.004 ± 0.004 −0.131 ± 0.006 ± 0.007

Im{r61−1} 0.011 ± 0.007 ± 0.004 0.022 ± 0.009 ± 0.007

the diffractive vertices [34]. It has therefore been assumed
that the proton-dissociative contribution does not affect
the decay angular distributions.

Finally, any influence of radiative corrections on the
angular distributions has been neglected.

7 Systematic errors

The systematic uncertainties were obtained by modifying
the analysis procedures as listed below.

(a) Sensitivity to the event selection criteria:
– The Mππ range was restricted to 0.7 < Mππ <

0.84 GeV for the BPC sample and 0.65 < Mππ <
0.9 GeV for the DIS sample.

– The minimum positron energy as measured in the
BPC was increased to 23 GeV.

– The minimum value of E−PZ was raised to 48 GeV.
– The minimum track transverse momentum was in-

creased from 150 MeV to 200 MeV for the BPC
analysis and to 300 MeV for the DIS analysis.

– The pseudorapidity range was restricted to |η| <
1.7 for the BPC data and |η| < 1.5 for the DIS
data.

– The t range was restricted to 0.05 < |t| < 0.5 GeV2.
(b) Sensitivity to the Monte Carlo simulation:

Table 4. The 15 combinations of spin-density matrix elements
r04ik , rα

ik, as obtained from the BPC data in two Q2 inter-
vals. Statistical and systematic uncertainties are given sep-
arately. The data cover the kinematic range 0.25 < Q2 <
0.85 GeV2, 20 < W < 90 GeV, 0.6 < Mππ < 1.0 GeV and
|t| < 0.6 GeV2. The average Q2 values for the two intervals are
〈Q2〉 = 0.32 GeV2 and 〈Q2〉 = 0.54 GeV2, respectively

ZEUS 1995 (BPC)

0.25 < Q2 < 0.4 GeV2 0.4 < Q2 < 0.85 GeV2

r0400 0.228 ± 0.016 ± 0.022 0.324 ± 0.015 ± 0.012

Re{r0410} 0.025 ± 0.009 ± 0.004 0.040 ± 0.010 ± 0.009

r041−1 −0.053 ± 0.012 ± 0.003 −0.028 ± 0.012 ± 0.006

r111 −0.039 ± 0.014 ± 0.018 −0.033 ± 0.013 ± 0.009

r100 −0.031 ± 0.022 ± 0.022 0.038 ± 0.023 ± 0.045

Re{r110} −0.020 ± 0.011 ± 0.007 −0.016 ± 0.012 ± 0.015

r11−1 0.347 ± 0.016 ± 0.013 0.329 ± 0.016 ± 0.012

Im{r210} 0.035 ± 0.010 ± 0.005 0.045 ± 0.011 ± 0.008

Im{r21−1} −0.353 ± 0.016 ± 0.018 −0.302 ± 0.016 ± 0.031

r511 0.009 ± 0.006 ± 0.010 0.007 ± 0.006 ± 0.004

r500 0.042 ± 0.014 ± 0.011 0.055 ± 0.015 ± 0.009

Re{r510} 0.139 ± 0.005 ± 0.012 0.149 ± 0.006 ± 0.008

r51−1 −0.006 ± 0.008 ± 0.007 −0.011 ± 0.008 ± 0.009

Im{r610} −0.128 ± 0.005 ± 0.006 −0.159 ± 0.005 ± 0.005

Im{r61−1} 0.007 ± 0.008 ± 0.006 0.025 ± 0.008 ± 0.008

– TheW distribution was reweighted by a factorW k,
with k varying between −0.1 and 0.1.

– The Q2 distribution was reweighted by a factor
1/(1 +Q2/M2

ρ )k, where k varies between −0.2 and
0.2 and Mρ is the ρ0 meson mass.

– The t slope was varied by ±1 GeV−2 for the BPC
data and by ±0.5 GeV−2 for the DIS data.

(c) Sensitivity to the fitting procedure: the method of mo-
ments was used instead of the maximum likelihood
method. Moments of the observed three-dimensional
distribution in the angles (cos θh, φh and Φh) were cal-
culated, i.e. the distribution was projected on appro-
priate functions of cos θh, φh and Φh. The same mo-
ments were evaluated for the reconstructed angular
distribution from the Monte Carlo simulation and the
difference between the moments in the data and those
in the Monte Carlo was minimised by adjusting the
values of the coefficients r04ik , rα

ik used in the simula-
tion. This method is a variation of that presented in
Appendix C of [26].

(d) Sensitivity to the binning: the standard number of bins
in cos θh, φh and Φh, 8×8×8, was changed to 6×8×8
bins and, in the BPC case, also to 10 × 10 × 10.

The dominant effects come from the sensitivity to the
binning, the modification of the Mππ range and the fitting
method (maximum likelihood vs method of moments). As
an example, for r500, the systematic uncertainty due to the
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Table 5. The 15 combinations of spin-density matrix elements r04ik , rα
ik, as obtained

from the BPC data in three t intervals. Statistical and systematic uncertainties are given
separately. The data cover the kinematic range 0.25 < Q2 < 0.85 GeV2, 20 < W <
90 GeV, 0.6 < Mππ < 1.0 GeV and |t| < 0.6 GeV2. The average |t| values for the three
intervals are 〈|t|〉 = 0.04 GeV2, 〈|t|〉 = 0.16 GeV2 and 〈|t|〉 = 0.37 GeV2, respectively

ZEUS 1995 (BPC)

0 < |t| < 0.1 GeV2 0.1 < |t| < 0.25 GeV2 0.25 < |t| < 0.6 GeV2

r0400 0.261 ± 0.014 ± 0.017 0.273 ± 0.020 ± 0.016 0.339 ± 0.029 ± 0.027

Re{r0410} 0.029 ± 0.009 ± 0.012 0.042 ± 0.012 ± 0.006 0.047 ± 0.017 ± 0.024

r041−1 −0.036 ± 0.012 ± 0.014 −0.034 ± 0.015 ± 0.018 −0.048 ± 0.019 ± 0.012

r111 −0.026 ± 0.013 ± 0.018 −0.043 ± 0.017 ± 0.019 −0.054 ± 0.022 ± 0.021

r100 0.023 ± 0.020 ± 0.034 −0.029 ± 0.028 ± 0.051 −0.071 ± 0.045 ± 0.086

Re{r110} −0.012 ± 0.011 ± 0.014 −0.032 ± 0.014 ± 0.018 −0.016 ± 0.021 ± 0.032

r11−1 0.328 ± 0.016 ± 0.015 0.333 ± 0.020 ± 0.023 0.300 ± 0.026 ± 0.020

Im{r210} 0.027 ± 0.010 ± 0.013 0.038 ± 0.014 ± 0.019 0.044 ± 0.020 ± 0.030

Im{r21−1} −0.329 ± 0.016 ± 0.025 −0.319 ± 0.020 ± 0.027 −0.285 ± 0.030 ± 0.030

r511 0.001 ± 0.006 ± 0.008 0.012 ± 0.008 ± 0.004 0.021 ± 0.010 ± 0.014

r500 0.026 ± 0.012 ± 0.025 0.070 ± 0.020 ± 0.009 0.117 ± 0.027 ± 0.050

Re{r510} 0.137 ± 0.005 ± 0.011 0.152 ± 0.007 ± 0.012 0.144 ± 0.010 ± 0.014

r51−1 −0.002 ± 0.008 ± 0.008 −0.012 ± 0.010 ± 0.008 −0.018 ± 0.014 ± 0.010

Im{r610} −0.144 ± 0.005 ± 0.009 −0.135 ± 0.007 ± 0.004 −0.121 ± 0.011 ± 0.022

Im{r61−1} 0.012 ± 0.008 ± 0.008 0.007 ± 0.010 ± 0.007 0.009 ± 0.015 ± 0.014

Table 6. Correlation matrix for the 15 combinations of spin-density matrix elements r04ik , rα
ik, as obtained from the BPC data

ZEUS 1995 (BPC)

r04
00 Re{r04

10} r04
1−1 r1

11 r1
00 Re{r1

10} r1
1−1 Im{r2

10} Im{r2
1−1} r5

11 r5
00 Re{r5

10} r5
1−1 Im{r6

10} Im{r6
1−1}

r04
00 1.000

Re{r04
10} 0.079 1.000

r04
1−1 0.046 0.054 1.000

r1
11 0.101 0.011 0.584 1.000

r1
00 −0.159 −0.025 −0.062 −0.414 1.000

Re{r1
10} −0.068 −0.508 −0.127 −0.039 0.043 1.000

r1
1−1 −0.327 −0.201 −0.082 −0.082 0.052 0.116 1.000

Im{r2
10} 0.105 0.445 0.075 0.062 −0.039 −0.293 −0.095 1.000

Im{r2
1−1} 0.312 0.097 0.019 0.009 −0.029 −0.069 0.073 0.072 1.000

r5
11 −0.095 0.231 0.014 −0.075 0.063 −0.038 0.014 0.011 0.050 1.000

r5
00 0.248 0.578 0.053 0.087 −0.223 −0.452 −0.150 0.544 0.133 −0.300 1.000

Re{r5
10} 0.299 0.080 −0.225 −0.138 −0.184 −0.201 −0.098 −0.084 0.023 −0.004 −0.044 1.000

r5
1−1 0.003 −0.325 0.052 0.058 0.007 0.117 −0.015 −0.012 −0.068 −0.479 −0.051 0.078 1.000

Im{r6
10} −0.308 0.051 −0.359 −0.221 −0.356 0.031 0.009 −0.056 −0.057 0.044 0.034 0.056 −0.054 1.000

Im{r6
1−1} −0.009 0.337 −0.046 −0.074 0.014 0.062 −0.072 0.169 0.035 0.443 0.041 −0.040 −0.251 0.055 1.000

binning is 26% (14%), and that due to the Mππ range is
15% (11%) for the BPC (DIS) analysis.

8 Discussion

In this section the r04ik , rα
ik combinations which exhibit

a deviation from SCHC are individually examined. The
implications of the measured violation of SCHC for R =
σγ?p

L /σγ?p
T are also discussed, as is the extent to which

NPE dominates the present data.

Deviations from the null values expected in the case of
SCHC are observed for Re{r0410}, r041−1, r

1
11, Im{r210} and

r500:

1. Re{r0410} = 0.034 ± 0.006 (stat.) ± 0.009 (syst.) for
the BPC sample. The DIS sample gives Re{r0410} =
0.013±0.010 (stat.)±0.022 (syst.), which is consistent
with the BPC result but does not significantly devi-
ate from zero. The H1 DIS result, Re{r0410} = 0.011 ±
0.012 (stat.) +0.007

−0.001 (syst.), is consistent with zero [10].
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Table 7. Correlation matrix for the 15 combinations of spin-density matrix elements r04ik , rα
ik, as obtained from the DIS data

ZEUS 1995 (DIS)

r04
00 Re{r04

10} r04
1−1 r1

11 r1
00 Re{r1

10} r1
1−1 Im{r2

10} Im{r2
1−1} r5

11 r5
00 Re{r5

10} r5
1−1 Im{r6

10} Im{r6
1−1}

r04
00 1.000

Re{r04
10} −0.014 1.000

r04
1−1 0.020 −0.081 1.000

r1
11 0.061 −0.097 0.273 1.000

r1
00 −0.011 −0.042 0.070 −0.381 1.000

Re{r1
10} 0.086 −0.219 0.146 −0.056 −0.086 1.000

r1
1−1 −0.203 0.059 −0.060 −0.050 0.023 0.196 1.000

Im{r2
10} 0.017 0.176 0.013 −0.032 −0.061 0.152 0.099 1.000

Im{r2
1−1} 0.182 −0.008 −0.028 0.041 0.005 0.170 0.433 0.095 1.000

r5
11 −0.257 0.292 −0.050 −0.174 0.088 −0.038 −0.054 0.166 −0.086 1.000

r5
00 0.172 0.422 −0.027 0.067 −0.221 −0.333 −0.004 0.254 0.042 −0.279 1.000

Re{r5
10} −0.131 0.331 −0.460 −0.170 −0.322 −0.221 0.023 −0.029 −0.162 0.054 −0.004 1.000

r5
1−1 0.015 −0.270 0.309 −0.022 −0.013 0.179 −0.107 0.195 −0.094 −0.156 −0.028 −0.038 1.000

Im{r6
10} 0.124 0.076 −0.432 −0.220 −0.339 −0.134 −0.143 −0.214 0.102 0.021 0.092 0.506 −0.014 1.000

Im{r6
1−1} −0.071 0.244 0.109 −0.043 0.007 0.205 −0.045 0.284 −0.245 0.221 −0.002 0.001 0.286 0.013 1.000

Table 8. The 15 combinations of spin-density matrix elements
r04ik , rα

ik, as obtained from the BPC data in two Mππ intervals.
Statistical and systematic uncertainties are given separately.
The data cover the kinematic range 0.25 < Q2 < 0.85 GeV2,
20 < W < 90 GeV, 0.6 < Mππ < 1.0 GeV and |t| < 0.6 GeV2

ZEUS 1995 (BPC)

0.6 < Mππ < 0.77 GeV 0.77 < Mππ < 1.0 GeV

r0400 0.311 ± 0.014 ± 0.013 0.227 ± 0.018 ± 0.016

Re{r0410} 0.026 ± 0.009 ± 0.010 0.032 ± 0.010 ± 0.005

r041−1 −0.031 ± 0.011 ± 0.006 −0.062 ± 0.014 ± 0.010

r111 −0.030 ± 0.012 ± 0.009 −0.054 ± 0.015 ± 0.007

r100 0.020 ± 0.019 ± 0.042 −0.011 ± 0.026 ± 0.041

Re{r110} −0.007 ± 0.010 ± 0.010 −0.029 ± 0.013 ± 0.010

r11−1 0.321 ± 0.014 ± 0.016 0.369 ± 0.018 ± 0.027

Im{r210} 0.023 ± 0.010 ± 0.010 0.064 ± 0.012 ± 0.017

Im{r21−1} −0.302 ± 0.014 ± 0.029 −0.362 ± 0.019 ± 0.016

r511 0.015 ± 0.006 ± 0.009 −0.002 ± 0.007 ± 0.006

r500 0.026 ± 0.013 ± 0.019 0.077 ± 0.015 ± 0.017

Re{r510} 0.152 ± 0.005 ± 0.008 0.129 ± 0.007 ± 0.012

r51−1 −0.010 ± 0.007 ± 0.007 −0.009 ± 0.009 ± 0.013

Im{r610} −0.155 ± 0.004 ± 0.004 −0.125 ± 0.006 ± 0.006

Im{r61−1} 0.019 ± 0.007 ± 0.006 0.007 ± 0.009 ± 0.008

Non-zero values of Re{r0410} have also been observed
in low-energy photoproduction [5], as well as in elec-
troproduction [6] and muoproduction [7] experiments.
Reference [6] quotes values ranging from 0.01 to 0.16
for 0 <∼ Q2 <∼ 1 GeV2 and 1.7 < W < 2.8 GeV. At
higher energy, 12.5 < W < 16 GeV, and for Q2 <
3 GeV2, the CHIO Collaboration found Re{r0410} =
0.07 ± 0.03 [7].

This coefficient is sensitive (cf. Table 1) to the interfer-
ence of helicity-conserving and helicity-single-flip am-
plitudes, as well as to the interference of helicity-single-
flip and helicity-double-flip amplitudes. Both
single-flip amplitudes are involved here, i.e. that for
the production of longitudinally polarised ρ0 mesons
from transverse photons and that for the production of
transversely polarised mesons from longitudinal pho-
tons.
The data are consistent with the predictions of [20,21]
at low Q2. Some disagreement with the predictions of
[19,21] is visible at high Q2.

2. r041−1 = −0.040 ± 0.009 (stat.) ± 0.019 (syst.) for the
BPC sample. No deviation from zero is observed for the
DIS sample, r041−1 = 0.000±0.011 (stat.)±0.008 (syst.).
The H1 DIS result, r041−1 = −0.010±0.013 (stat.)+0.004

−0.003
(syst.), is consistent with zero [10].
Negative values for r041−1, consistent with the BPC re-
sult, though only marginally different from zero, were
also measured in the range 1.7 < W < 2 GeV, Q2 <
1 GeV2 [6]. A value of r041−1 = −0.07 ± 0.03 was re-
ported for 12.5 < W < 16 GeV [7]. Negative values of
ρ0
1−1 were measured in photoproduction [5].

This term is proportional to the square of the helicity-
single-flip amplitude for the production of transversely
polarised ρ0 mesons from longitudinal photons, T10,
and is also sensitive to the interference of helicity-
conserving and helicity-double-flip amplitudes.
For this combination of matrix elements, as for
Re{r0410} discussed above, the relative contribution from
longitudinal photons is an order of magnitude larger
for the DIS sample than for the BPC sample, owing to
the Q2 dependence of R (see (1)).
The pQCD based models [19–21] reproduce the DIS
data for r041−1. At low Q2 some disagreement between
the model [21] and the data is observed.

3. r111 = −0.039±0.009 (stat.)±0.021 (syst.) for the BPC
sample. Here again, no significant effect is visible in the
DIS data, r111 = −0.006 ± 0.012 (stat.) ± 0.026 (syst.).
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No evidence for a deviation from zero of r111 was found
by the fixed-target experiments or by H1; the latter
measured r111 = −0.002 ± 0.034 (stat.) ± 0.006 (syst.)
in DIS [10].
This coefficient is sensitive to the interference between
the helicity-conserving and the helicity-double-flip am-
plitudes.
Here also the models [19–21] reproduce the DIS data.
At low Q2, disagreements similar to those observed for
r041−1 between the model [21] and the data are visible.

4. Im{r210} = 0.039 ± 0.008 (stat.) ± 0.012 (syst.) (BPC).
The DIS result, Im{r210} = 0.008 ± 0.014 (stat.) ±
0.031 (syst.), is consistent with zero, although also
consistent with the BPC result. The H1 DIS result,
Im{r210} = 0.023 ± 0.016 (stat.)+0.010

−0.009 (syst.), is also
consistent with zero [10]. No significant deviation of
Im{r210} from zero was found in the earlier experi-
ments.
This coefficient is sensitive to the interference of
helicity-conserving and helicity-single-flip amplitudes
as well as to the interference of single-flip and double-
flip amplitudes. The single-flip amplitude involved is
that corresponding to the production of longitudinally
polarised ρ0 mesons from transverse photons.
The pQCD based models [19–21] give a satisfactory
description of the data.

5. r500 = 0.051 ± 0.010 (stat.) ± 0.018 (syst.) (BPC) and
r500 = 0.095 ± 0.019 (stat.) ± 0.024 (syst.) (DIS). The
H1 experiment found r500 = 0.093 ± 0.024 (stat.)+0.019

−0.010
(syst.) in DIS [10], in good agreement with the present
ZEUS DIS result. None of the fixed-target experiments
measured significant deviations from zero for r500.
This coefficient is proportional to the interference be-
tween the helicity-non-flip amplitude for longitudinal
photons T00 and the helicity-single-flip amplitude T01
for the production of longitudinally polarised ρ0 mesons
from transverse photons. The BPC data suggest that
r500 increases with increasing |t|.
The deviation of r500 from zero is directly related to
the failure of SCHC to describe the Φh distribution
(cf. Figs. 4 and 5), as is apparent by integrating (3)
over cos θh and φh:

W (Φh) ∝ [1 − ε cos 2Φh(2r111 + r100)

+
√

2ε(1 + ε) cosΦh(2r511 + r500)]. (11)

The results for r500 are consistent with the predictions
of [19–21], with the possible exception of model [21],
which at large Q2 is somewhat higher than the data.

The SCHC-breaking effects observed are not large. This
can be seen, for instance, from the fact that the SCHC-
based relations r11−1 = −Im{r21−1}, Re{r510} = −Im{r610}
are satisfied within errors:

r11−1 + Im{r21−1} = 0.003 ± 0.016 (stat.)
±0.030 (syst.) (BPC),

r11−1 + Im{r21−1} = −0.037 ± 0.028 (stat.)
±0.038 (syst.) (DIS),

Re{r510} + Im{r610} = 0.001 ± 0.005 (stat.)
±0.013 (syst.) (BPC),

Re{r510} + Im{r610} = 0.006 ± 0.012 (stat.)
±0.011 (syst.) (DIS).

The relation 1 − r0400 − 2r11−1 = 0 (which requires NPE
in addition to SCHC) is also satisfied, but only within ap-
proximately 1.6 standard deviations (summing statistical
and systematic uncertainties in quadrature) for the DIS
data:

1 − r0400 − 2r11−1 = 0.060 ± 0.021 (stat.)
±0.047 (syst.) (BPC),

1 − r0400 − 2r11−1 = 0.079 ± 0.032 (stat.)
±0.036 (syst.) (DIS).

The ratio of the ρ0 electroproduction cross section for
longitudinal photons to that for transverse photons, R,
was also determined under a much weaker set of assump-
tions than SCHC (7)–(9). The BPC data give R =
0.368+0.021

−0.020 (stat.) +0.024
−0.023 (syst.), to be compared with the

SCHC-based valueR = 0.377±0.021 (stat.) ±0.021 (syst.).
The DIS data yield R = 2.58+0.16

−0.15 (stat.) +0.24
−0.21 (syst.)

while the SCHC-based value is R = 2.66+0.17
−0.15 (stat.)

+0.24
−0.21(syst.). The new results differ from the value derived
from the SCHC hypothesis by less than 3% when averaged
over either the BPC or DIS data samples. It can therefore
be concluded that the results for R presented in [9] are not
significantly influenced by the SCHC assumption used in
obtaining them.

The size of the SCHC-breaking effects can also be
quantified by evaluating the ratios of the helicity-single-
flip and helicity-double-flip amplitudes to the
helicity-conserving amplitudes:

– The ratio of T01 (for the production of longitudinally
polarised ρ0 mesons from transverse photons) to the
helicity-conserving amplitudes can be estimated as (cf.
(9))

τ01 =
|T01|√|T00|2 + |T11|2

' r500√
2r0400

, (12)

which holds under the same assumptions specified for
(9). Equation (12) gives τ01 = (6.9 ± 1.3 (stat.) ±
2.4 (syst.))% for the BPC data and τ01 = (7.9 ±
1.6 (stat.) ± 2.0 (syst.))% for the DIS data. The H1
result for this quantity is (8 ± 3)% [10].

– Likewise, the ratio

τ10 =
|T10|√|T00|2 + |T11|2

' |Re{r0410} + Re{r110}|√
r0400

(13)

can be evaluated, where T10 is the amplitude for the
production of transversely polarised ρ0 mesons from
longitudinal photons. Equation (13) is exact if NPE
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holds and T00 and T10 have the same phase. The value
τ10 = (2.9± 1.4 (stat.) ± 3.0 (syst.))% is found for the
BPC sample and τ10 = (2.7±1.9 (stat.) ±3.1 (syst.))%
for the DIS data. These results are consistent with the
expectation of a severe suppression of the production
of transversely polarised ρ0 mesons from longitudinal
photons [22].

– The size of the helicity-double-flip amplitude T1−1 can
be derived assuming NPE and the same phase for T1−1
and T11:

τ1−1 =
|T1−1|√|T00|2 + |T11|2

' |r111|√
2r11−1

, (14)

which gives τ1−1 = (4.8 ± 1.1 (stat.) ± 2.6 (syst.))%
in the BPC analysis and τ1−1 = (1.4 ± 2.7 (stat.) ±
5.9 (syst.))% for the DIS sample.

Finally, the data can be used to verify the validity of
the NPE hypothesis. The left-hand-side of (10) is 0.058 ±
0.027 (stat.)±0.074 (syst.) for the BPC sample and 0.091±
0.043 (stat.) ± 0.065 (syst.) for the DIS sample. Both re-
sults are consistent with the NPE expectation of zero.

9 Summary and conclusions

Exclusive electroproduction of ρ0 mesons has been mea-
sured at HERA in two Q2 ranges, 0.25 < Q2 < 0.85 GeV2

and 3 < Q2 < 30 GeV2, and the angular distributions
of the decay pions have been studied. The low-Q2 data
span the range 20 < W < 90 GeV; the high-Q2 data
cover the 40 < W < 120 GeV interval. Both samples ex-
tend up to |t| = 0.6 GeV2. The available statistics enable
a determination of the 15 combinations of spin-density
matrix elements, r04ik and rα

ik, and allow a check of the
extent to which s-channel helicity conservation holds at
HERA energies for this process. An overall comparison
of the data with the SCHC hypothesis leads to a very
poor χ2, χ2/ndf = 81.1/12, for the BPC sample and
χ2/ndf = 79.2/12 for the DIS sample. The deviation from
SCHC is most evident in the Φh distribution.

In the low-Q2 sample, five of the r04ik and rα
ik com-

binations deviate from the null value expected if SCHC
is assumed. The combination r500 is measured to be r500 =
0.051±0.010 (stat.)±0.018 (syst.), which indicates the pro-
duction of longitudinally polarised (i.e. helicity zero) ρ0

mesons from transverse photons. In addition, Re{r0410} =
0.034 ± 0.006 (stat.) ± 0.009 (syst.), r041−1 = −0.040 ±
0.009 (stat.)±0.019 (syst.), r111 = −0.039±0.009 (stat.)±
0.021 (syst.) and Im{r210} = 0.039 ± 0.008 (stat.)±
0.012 (syst.). The measured values for Re{r0410} and r041−1
are consistent with the results of earlier fixed-target ex-
periments. Some variation of these results with Mππ is ob-
served, possibly indicating a contribution from
non-resonant π+π− production and its interference with
resonant ρ0 production.

In the high-Q2 sample, the only coefficient significantly
different from the SCHC expectation is r500, for which the

value r500 = 0.095±0.019 (stat.)±0.024 (syst.) is measured.
This value of r500 is consistent with the predictions of the
pQCD based models [19–21]. The results for all coefficients
r04ik and rα

ik at large Q2 are in good agreement with those
found by H1 [10].

The ratio R of the cross sections for ρ0 production
from longitudinal and transverse photons was also deter-
mined without assuming SCHC. The results thus found
differ from those derived from the SCHC hypothesis by
less than 3% when averaged over either the BPC or DIS
data samples. The results for R presented in [9] are thus
not significantly influenced by the SCHC assumption used
in obtaining them.

Finally, the data support the hypothesis of natural par-
ity exchange in ρ0 electroproduction.

In conclusion, a small breaking of SCHC, less than
10% in the amplitudes, is a characteristic feature of ex-
clusive ρ0 meson production also at the large values of W
accessible at HERA. In the high-Q2 region, the effect is
quantitatively reproduced by perturbative QCD calcula-
tions.
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29. T. Sjöstrand, Comp. Phys. Commun. 39 (1986) 347;
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